Journal of Organometallic Chemistry, 80 (1974) 47–69 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

OXAMETALLACYCLOALCANES

V^{*}. SYNTHESE DE SILA-2, GERMA-2 ET STANNA-2 OXA-1 CYCLOPENTANES PAR DESHYDROCONDENSATION INTRA-MOLECULAIRE D'HYDRURES SILICIES, GERMANIES OU STANNIQUES γ -HYDROXYLES

M. MASSOL, J. BARRAU, J. SATGE et B. BOUYSSIERES Laboratoire de Chimie des Organominéraux, Université Paul Sabatier, Toulouse (France) (Reçu le 16 mars 1974)

Summary

The γ -hydroxymetal hydrides $> M(H)(C <)_3 OH (M = Si, Ge, Sn)$ were synthesized by reduction of γ -acetoxychloro- or γ -hydroxychloro-silanes, -germanes and -stannanes. These derivatives with M—H bonds lead, by cyclisation at room-or higher temperatures, with or without catalyst, depending on the nature of the metal, to various oxametallacyclopentanes. The cyclisation proceeds by intra-molecular dehydrocondensation between M—H and O—H bonds. These dehydrocondensation reactions are analysed and discussed according to the polarity of the M—H bonds. Intramolecular addition of the M—H bond into the unsaturated carbon—carbon bonds of the corresponding non-cyclic compounds is also an excellent way of preparing the same heterocycles.

The IR and NMR analyses of all new compounds are given.

Résumé

Les hydrures métallés γ -hydroxylés du type $>M(H)(C<)_3$ OH (M = Si, Ge, Sn) sont obtenus suivant les cas par réduction de γ -acétoxychloro- ou γ -hydroxychloro-silanes, -germanes et -stannanes. Ces dérivés à liaison M—H subissent par déshydrocondensation, à température ordinaire ou sous effet thermique, en présence ou non de catalyseur suivant la nature du métal, une cyclisation intramoléculaire conduisant à des oxametallacyclopentanes. Ces réactions de déshydrocondensation sont analysées et discutées en fonction de la polarité des liaisons M—H.

^{*}Partie IV vour Ref. 13.

Ce travail constitue le développement d'une partie de la communication presentee au Vth International Conference on Organometallic Chemistry, Moscou 1971 [1].

L'addition intramoléculaire de la liaison M—H sur l'insaturation carbone carbone des dérivés non-cycliques correspondants est également une excellente voie d'accès à ces mêmes hétérocycles. Les caractéristiques IR et de RMN de tous les nouveaux dérivés décrits dans ce mémoire sont reportées.

Introduction

Les réactions de déshydrocondensation intramoléculaires entre les alcools et les hydrures de silicium [2-4], de germanium [5, 6] et d'étain [7, 8] ont permis de préparer de nombreux dérivés organométalliques alcoxylés du type \geq MOR (M = Si, Ge, Sn). L'alcoolyse de la liaison métal-hydrogène est liée au caractère réducteur de l'hydrogène fixé au métal; elle est généralement accélérée par la présence d'un catalyseur métallique qui favorise l'élimination d'hydrogène au cours d'un processus de substitution polaire du type 1.

$$R = \frac{1}{2} H$$

Appliquée au cas de composés organiques des éléments du groupe IVB, Si, Ge et Sn, renfermant simultanément les deux groupes fonctionnels antagonistes "hydrure" et "alcool", cette réaction nous a paru devoir constituer une intéressante méthode de synthèse d'oxametallacycloalcanes selon éqn. 2.

Dans nos précédentes études sur la synthèse d'oxagermacycloalcanes [6, 9–13], la déshydrocondensation intramoléculaire sur Ni de Raney de γ -hydroxyhydrogermanes a permis de préparer avec d'excellents rendements deux oxa-1 germa-2 cyclopentanes [6, 11] obtenus également par d'autre voies (éqn. 3).

$$\begin{array}{ccc} \text{Et}_{2}\text{GeCH}_{2}\text{CH}_{2}\text{CHOH} & \overset{\text{Ni}}{=} & \text{Et}_{2}\text{Ge} & (R = H, CH_{3}) \\ H & R & O & R \end{array}$$
(3)

Le clivage par LiAlH₄ du tétraméthyl-2,2,4,5 oxa-1 sila-2 cyclopentane [14, 15] a permis à Manuel et coll. d'observer une déshydrocondensation spontanée de l'hydrosilane γ -hydroxylé formé, ce dernier régénérant le composé cyclique de départ (éqn. 4).

$$Me_{2}Si_{O}CH_{3} \qquad \begin{array}{c} LiAIH_{4}/H_{2}O \\ \hline \\ CH_{3} \end{array} \qquad \begin{array}{c} LiAIH_{4}/H_{2}O \\ \hline \\ 2O^{\circ} \\ H \end{array} \qquad \begin{array}{c} Me_{2}SiCH_{2}CH - CHOH \\ \hline \\ H \\ CH_{3} \\ CH_{3} \end{array} \qquad (4)$$

Les mêmes réactions de clivage et de cyclisation ont été réalisées par les mêmes auteurs dans le cas des diéthyl-2,2 (méthyl-5 et diméthyl-4,5) oxa-1 germa-2 cyclopentanes [16].

En série stannique l'observation de Laliberte et coll. [17] relative à l'action du dihydrure de dibutylétain sur l'alcool allylique avec formation de l'oxa-1 stanna-2 cyclopentane peut-être interprétée d'après l'équation générale 2; le γ -hydroxyhydrure d'étain est envisagé comme l'un des intermédiaires de la réaction 5; il ne peut toutefois être isolé.

$$Bu_{2}SnH_{2} + H_{2}C = CHCH_{2}OH \longrightarrow [Bu_{2}Sn(H)CH_{2}CH_{2}CH_{2}OH] \longrightarrow Bu_{2}Sn(f)$$
(5)

Après ces divers résultats nous avons approfondi le problème de la synthèse des γ -hydroxyhydrosilanes, -germanes et -stannanes et systématiquement étudié leur stabilité et leurs conditions de cyclisation intramoléculaire avec formation d'oxamétallacyclopentanes et -pentènes. Les oxasila- (et stanna-) cyclopentanes et -pentènes ont pu être également obtenus par cyclisation d'alcénoxy- et alcynoxyhydrosilanes et -stannanes.

Résultats

I. Hydrures siliciés, germaniés et stanniques γ -hydroxylés $>M(H)(C<)_3OH$

La préparation de dérivés organométalliques à fonction hydroxyle en position γ de l'atome métallique a déjà été largement étudiée; les principales méthodes font appel à une hydrométallation d'une double liaison éthylénique en position allylique par rapport à une fonction hydroxylée alcool ou ester (éqn. 6).

$$-\underset{l}{\overset{H}{\operatorname{H}}} + \underset{l}{\operatorname{C}} = \underset{l}{\operatorname{C}} - \underset{l}{\overset{H}{\operatorname{C}}} - \underset{l}{\operatorname{OR}} - \underset{l}{\overset{H}{\operatorname{M}}} - \underset{l}{\overset{H}{\operatorname{C}}} - \underset{l}{\overset{H}{\operatorname{CH}}} - \underset{l}{\overset{H}{\operatorname{CH}}} - \underset{l}{\overset{H}{\operatorname{OR}}}$$
(6)

 $M = Si[18], Ge[19], Sn[7]; R = H, COCH_3$

Dans le cas d'un ester ($R = COCH_3$ par exemple) une réduction par un hydrure métallique tel que LiAlH₄ permet de passer facilement à l'alcool. Cette méthode est applicable indifféremment au cas du silicum, du germanium et de l'étain lorsque l'hétéroatome métallique est lié à 3 groupes alcoyles ou aryles (cas des monohydrures R_3MH).

Notre but étant de préparer des dérivés γ -hydroxylés à liaison métal—hydrogène, la présence d'un atome d'hydrogène supplémentaire, ou d'halogène, sur l'hydrure organométallique de départ $R_2M(X)H$ (X = H ou halogène) peut entrainer des réactions secondaires: hydrométallation de deux molécules d'insaturés à partir des dihydrures, ou réaction de déshydrohalogénation entre l'halogène et la fonction alcool dans le cas du silicium.

L'hydrométallation d'un dérivé fonctionnel allylique par un composé du type $R_2M(H)X$ (X = H ou Cl) a, néanmoins, été retenue pour étape initiale dans ce travail, en choisissant dans chaque cas particulier du silicium, du germanium ou de l'étain, les dérivés susceptibles de donner les meilleurs résultats.

(1) Cas du silicium

La grande volatilité de certains dihydrosilanes tels que Me₂SiH₂ leur fait préférer l'emploi de chlorohydrosilanes. Mais on ne peut envisager dans ce cas

SYNTHES	E DE γ-HYDROXY	HYDROSILA	NES			
H ₂ C≈C(R)	CH(R')OCOCH3	γ-Acétoxy	chiorosilane	γ-Hydroxy	ybydrosilane	
R	R'	 No.	Rdt. (%)	No.	Rdt. (%) a	-
н	н	la	81 [20]	lx.	36	
CH3	н	lla	74	Hx	35[14]	
СН3	CH3	IIIa	71	111×	28[14]	

TABLEAU I SYNTHESE DE 7-HYDROXYHYDROSILANES

^a A partir des chloroacétates purs.

l'hydrosilylation directe d'un alcool éthylénique, l'alcoolyse de la liaison Si-Cl a lieu en effet même en l'absence d'une base aminée. Nous avons donc utilisé la réaction entre le diméthylchlorosilane et divers acétates de type allylique en présence d'un catalyseur platiné ($H_2 PtCl_6$ en solution dans le THF; éqn. 7). Les γ -acétoxychlorosilanes ainsi obtenus, traités au sein de l'éther par LiAlH₄ conduisent aux γ -hydrosilanes attendus (Tableau 1).

$$Me_{2}SiHCl + H_{2}C=C-CHOCOCH_{3} \xrightarrow{H_{2}PiCl_{6}} H_{2}PiCl_{6}$$

$$R R'$$

$$Me_{2}SiCH_{2}CH-CHOCOCH_{3} \xrightarrow{LiAlH_{4}} Me_{2}SiCH_{2}CH-CHOH$$

$$Cl R R' H R R'$$

$$(Ia, IIa, IIIa) (Ix, IIx, IIIx)$$

$$(Ix, IIx, IIIx)$$

L'étape de purification de ces derniers composés doit être assez rapide: l'élimination du solvant est conduite sous vide aux environs de 0°C; une distillation sous basse pression très réduite permet d'isoler le γ -hydroxyhydrosilane pratiquement pur (cf. partie expérimentale). Nous avons en effet observé un dégagement spontané d'hydrogène dans la solution éthérée obtenue après traitement par LiAlH₄. Ce dégagement gazeux est par contre très faible et lent aux environs de 0°C. A température ambiante on note une évolution des γ -hydroxysilanes qui conduisent directement avec départ d'hydrogène aux oxasilacyclopentanes (cf. Sect. II) (éqn. 8).

$$Me_{2}S_{1}-(C)_{3}-OH \longrightarrow Me_{2}S_{1} + H_{2}$$
(8)

Remarque. Nous avons selon la même méthode tenté de préparer les γ -hydroxydihydrosilanes MeH₂Si(C \leq)₃OH en partant du méthyldichlorosilane. En fait par réduction des γ -acétoxydichlorosilanes MeCl₂Si(C \leq)₃OCOCH₃ purs on ne récupère que des polymères, par suite d'un dégagement spontané et rapide d'hydrogène en solution éthérée avec participation des deux liaisons Si-H. Le clivage de ces polymères avant solidification lors de l'élimination de l'éther, par le chlorure d'acétyle permet en effet de régénerer l'acétate dichloré initial.

 $[> Si(Me)(C <)_3 O]_n \xrightarrow{CH_3COCl} MeCl_2 Si(C <)_3 OCOCH_3$

Nous avons de même échoué dans l'obtention des γ -hydroxymonohydrosilanes éthyléniques

$$Me_{2}Si(H)C=C-C-OH$$

$$| | / \rangle$$

$$R R'$$

par action de Me₂SiHCl sur des acétates de type propargylique suivie d'une réduction en alcool. En présence de H₂PtCl₆, indispensable à l'hydrosilylation, seul l'isomère *trans* est obtenu (stéréospécificité de l'addition *cis* en présence de catalyseur platiné [21, 22]; dès passage à la forme γ -hydroxyhydrosilane la dèshydrocondensation est spontanée et exclusivement intermoléculaire; elle conduit aux polymères *trans*

 $\begin{bmatrix} Si(Me)_2 CH=CH-C-O \end{bmatrix}_n \\ \land \\ R R' \end{bmatrix}$

qui régénèrent les chloroacétates trans

par action de CH₃COCl.

(2) Cas du germanium

La grande réactivité de la liaison germanium—hydrogène des alcoylchlorogermanes [23] vis à vis des insaturations carbone—carbone, et la relative mertie de la liaison Ge—Cl vis à vis des alcools en l'absence de base (amine par exemple) permettent d'envisager dans ce cas l'hydrogermylation directe des alcools ou celle des acétates correspondants (éqn. 9, Tableau 2).

dérivés x

 $(\Sigma = OCOCH_3, dérivés a; \Sigma = OH, dérivés b)$

TABLEAU 2 SYNTHESE DE 7-HYDROXYHYDROGERMANES

H ₂ C≈C	(R)CH(R')Σ	Σ = 0CO	сн3	Σ = OH		γ-Hydi	oxybydrogerman	2
R	R'	No.	Rdt. (%)	No.	Rdt. (%)	No.	Rdt. (%) à par	tır
							des acétates	des الcools
н	н	íVa	79	IVb[24]	88	IVx	85	72
CH ₃	н	Va [24]	82	νъ	75	Vх	69	80
ค้	CH3			VIb	72	Vix		82
СН3	СН3	VIIa	75	VIſb	71	Vilx	67	77

Les réactions d'addition sont effectuées à reflux en présence d'azobisisobutyronitrile; tous les dérivés sont ici parfaitement stables, particulièrement les γ -hydroxyhydrogermanes isolés après réduction, au moyen de LiAlH₄, des chloroalcools ou chloroacétates germaniés.

Remarque. Contrairement au cas du silicium nous avons pu obtenir les γ -hydroxyhydrogermanes vinyliques sous forme *cis* à partir des alcools de type propargylique (éqn. 10, Tableau 3).

$$Et_{2}GeHCl + HC = C - C - OH \xrightarrow{AIBN} Et_{2}GeCH = CH - C - OH \xrightarrow{LIAIH_{4}} \\ R R' Cl R R' \\ (\sim 100\% cis) \\ Et_{2}GeCH = CH - C - OH (10) \\ H R R' \\ (100\% cis)$$

L'hydrogermylation radicalaire de la triple liaison acétylénique par les dichlorogermanes (*trans* addition [23c]) est stéréospécifique; la déshydrocondensation intramoléculaire des γ -hydroxyhydrogermanes n'est observée que sur Ni de Raney (cf. Sect. II, 2).

(3) Cas de l'étain

L'action du dihydrure de dibutylétain sur l'alcool allylique en présence d'AIBN a permis à Laliberte et coll. [17] d'obtenir directement le premier dibutyl-2,2 oxa-1 stanna-2 cyclopentane, solide amorphe. Pour expliquer cette formation les auteurs envisagent le passage par l'un ou l'autre des deux dérivés non isolés: alcénoxyhydrostannane $Bu_2(H)SnOCH_2CH=CH_2$ ou hydroxypropylhydrostannane $Bu_2(H)Sn(CH_2)_3OH$. A la suite de nos travaux sur les alcenoxyhydrogermanes

R₂(H)GeOCC=C<*

TABLEAU 3

[6, 10], et des réactions effectuées sur les γ -hydroxyhydrosilanes et -germanes précedemment décrites dans ce mémoire, nous avons repris et étendu la réaction de Laliberte aux cas de nombreux alcools allyliques ou propargyliques^{**} afin

SYNTHESE	DE γ-HYDROXYGE	RMANES ETHYLEN	IQUES	
$\mathbf{R} = \mathbf{R}'$	γ-Hydroxych	lorogermane	γ-Hydroxyb	drogermane
	No.	Rdt. (%)	No.	Rdt. (%)
н	VIIIb	36	VIIIx	73
CH 3	IХЪ	75	IXx	75

Ces dénvés très stables peuvent être obtenus par transalcoxylation entre des alcools de type allylique et le diéthylméthoxyhydrogermane [6] ainsi que par alcoxylation du diéthyldihydrogermane par les mêmes alcools sur Ni de Raney (Rdt ≈ 100%) [10].

** Le cas des denves propargyliques à l'origine d'oxastannacyclopentènes est envisagé separément [25].

d'en élucider le mécanisme. Nous avons tenté dans ce but de synthétiser séparément l'hydroxypropylhydrostannane et l'alcénoxyhydrostannane et comparé leur stabilité à celle des dérivés homologues siliciés ou germaniés.

(a) Essai de synthèse de $Bu_2Sn(H)OCH_2CH \approx CH_2$. Pour tenter d'appliquer au cas de l'étain la réaction de transalcoxylation utilisée en série germaniée $(R_2GeHOMe + HOally] \rightarrow R_2Ge(H)Oallyl + MeOH[10])$ nous avons préparé tout d'abord le dibutylméthyloxyhydrostannane.

Par réaction d'échange hydrogène—méthoxy entre Bu₂SnH₂ et Bu₂Sn(OMe)₂ à température ordinaire nous avons obtenu Bu₂Sn(H)OMe (Rdt. 80%). (IR : ν (Sn—H)1889 cm⁻¹; RMN: δ (Sn—H)4.80 ppm). Ce dérivé est instable thermiquement et ne peut être distillé; sa décomposition vers 70°C donne du méthanol et un liquide huileux jaune non miscible au méthanol, identifié après examen de la littérature (article général de Neumann [7]) au polydibutylétain.

$$Bu_{2}SnH_{2} + Bu_{2}Sn(OMe)_{2} \xrightarrow{T^{\circ} \text{ ord.}} Bu_{2}Sn(H)OMe \quad (Rdt. 80\%)$$

$$n Bu_{2}Sn(H)OMe \xrightarrow{60-70^{\circ}} n MeOH + (Bu_{2}Sn)_{n} \qquad (11)$$

Ce dernier dérivé à caractère carbénoïde a été caractérisé par action des halogénures minéraux (HgCl₂) ou organiques (BuCl, allyl-Cl, crotyl-Br) qui conduisent de façon classique [7] aux halogènures stanniques correspondants: successivement Bu₂SnCl₂, Bu₃SnCl, Bu₂(Cl)Sn allyl, Bu₂(Br)Sn crotyl.

Le dibutylméthoxyhydrostannane a été traité par l'alcool allylique; seule est en fait observée la décomposition du dérivé de départ.

$$Bu_2Sn(H)OMe \xrightarrow{CH_2=CHCH_2OH} MeOH + (Eu_2Sn)_n$$

--- ----

L'échange direct entre Bu_2SnH_2 et le diallyloxydibutylétain (préparé par transalcoxylation entre $Bu_2Sn(OMe)_2$ et l'alcool allylique selon Weiss et coll. [26]) permet d'identifier le dérivé mixte $Bu_2(H)SnOCH_2CH=CH_2$ par IR ($\nu(Sn-H)$ 1793 cm⁻¹) et RMN ($\delta(Sn-H)$ 4.82 ppm) mais non de l'isoler pur par distillation. Sous effet thermique modéré une décomposition est observée avec élimination d'alcool allylique, formation de polybutylétain et d'un dérivé blanc cristallisé insoluble dans les solvants usuels identifié à l'oxa-1 stanna-2 cyclopentane décrit par Laliberte [17].

$$Bu_{2}SnH_{2} + Bu_{2}Sn(Oallyl)_{2} \xrightarrow{20^{\circ}} 2 Bu_{2}Sn-Oallyl \\H \\40^{\circ} \qquad (12)$$

$$(Bu_{2}Sn)_{n} + Bu_{2}Sn \qquad (Rdt. 30\%)$$

Il apparait donc que la présence simultanée sur l'atome d'étain d'un groupe alcoxy (OMe ou Oallyl) et d'hydrogène entraine une grande instabilité thermique du dérivé particulièrement sensible a une α -élimination^{*} à l'origine de l'espèce divalente stannique.

(b) Essai de synthèse de $Bu_2Sn(H)(CH_2)_3OH$. Les travaux de Neumann et coll. [30] ont montré qu'un mélange équimoléculaire de dialcovidihalostannane et de dialcovidihydrostannane se comportait vis a vis des composés insaturés comme le stannane mixte hydrohalogéné. Ce type d'hydrostannation permet d'obtenir les dérivés stanniques fonctionnels à liaison Sn-Cl

$$R_{2}SnH_{2} + R_{2}SnCl_{2} \rightarrow 2 R_{2}(Cl)SnH \xrightarrow{\exists c=c\Sigma} R_{2}(Cl)SnCCH\Sigma$$
(13)
($\Sigma = alcool, nitrile, ester$)

Nous avons appliqué cette réaction au cas de l'acétate d'allyle et obtenu le γ -acétoxychlorostannane Bu₂(Cl)Sn(CH₂)₃OCOCH₃ (Xa). Elle peut être de même étendue au cas des acétates de type propargylique

HC≡CCOCOCH₃ /`\ R R'

 $(R = R' = H \text{ ou } CH_3)$ qui conduisent aux acétoxychlorostannanes éthyléniques exclusivement *cis* (Tableau 4).

 $Bu_2(Cl)SnCH=CHCOCOCH_3$ (XIa et XIIa). R R'

La réduction de l'acétate Xa par LiAlH₄ en phase éthérée doit vraisemblablement conduire à l'alcool correspondant $Bu_2(H)Sn(CH_2)_3OH$. Ce dérivé n'a pu être isolé; on note en cours de réaction à 0°C un dégagement gazeux d'hydrogène dans le milieu réactionnel.

Le dibutyl-2,2 oxa-l stanna-2 cyclopentane, solide non soluble dans les solvants organiques usuels, formé directement à partir de l'hydroxyhydrure est difficilement séparable de la phase aqueuse renfermant les sels metalliques de Li et d'Al.

D'une manière plus générale aucun alcool γ -stannique à liaison Sn-H

 H^{\Rightarrow} Sn(C<)₃OH

TABLEAU 4	
SYNTHESE DES CHLOROSTANNANES ETHYLENIQ	UES

	$\Sigma = 000$	CH3		Σ = OH		
R = R'	No.	℃ cis/trans	Rdi. (%)	No.	% cis/Irans	Rdi. (%)
 н	XIa	~100/0	83			
СНз	XIIa	~100/0	76	хіњ	~100/0	88

Cette réaction d'α-élimination sur l'atome d'étain porteur d'un groupement alcovy et d'un hydrogène est à rapprocher des décompositions d'alcoxyhydrogermanes qui ont permis d'accéder aux germylènes, isologues germaniés des carbènes [27-29].

n'a pu être isolé, une déshydrocondensation spontanée et très rapide dès la température ambiante conduisant directement à l'oxastannacyclopentane.

Cette expérience ainsi que la synthèse de l'allyloxyhydrostannane montrent la grande instabilité des dérivés postulés par Laliberte comme intermédiaires réactionnels dans l'action directe du dihydrostannane sur l'alcool allylique en présence d'AIBN. Le dégagement gazeux observé lorsque l'on traite l'alcool allylique par Bu_2SnH_2 en l'absence d'AIBN semble montrer que la déshydrocondensation est la première étape de la réaction, l'addition de générateur de radicaux libres favorisant ensuite l'hydrostannation intramoléculaire.

$$Bu_{2}SnH_{2} + HOCH_{2}CH = CH_{2} - \frac{20^{\circ}}{-H_{2}} = Bu_{2}(H)SnOCH_{2}CH = CH_{2}$$

$$AIBN$$

$$Bu_{2}Sn = C$$

$$Bu_{2}Sn = C$$

II. Cyclisation des hydrures métallés γ-hydroxylés

Les synthèses précédentes ont fait apparaître des différences notables de comportements des divers dérivés $\geq M(H)(C \leq) \cdot OH$.

Les diverses réactions de déshydrocondensation effectuées à partir de ces hydrures γ -hydroxylés et les cycles obtenus sont rassemblés dans le Tableau 5.

(1) Cas du germanium

La présence de Ni de Raney est indispensable, le dégagement d'hydrogène est mesuré à l'appareil de Zerevitinov. Lorsque la quantité théorique est obtenue, le produit est purifié au fractionnement (rendement quasi-quantitatif). Dans le cas des dérivés insaturés, le germacyclopentène doit être purifié par chromatographie en phase gazeuse afin d'éliminer une quantité notable de dérivé saturé formé par hydrogénation du cycle insaturé: cette réaction secondaire sur Ni de Raney n'a pu être évitée par l'emploi d'un solvant; tous les éthers cycliques germaniés obtenus sont monomères [10, 31, 32] parfaitement stables et peu sensibles à l'hydrolyse.

(2) Cas du silicium

La cyclisation s'effectue spontanément à température ambiente; l'addition de Ni de Raney sur Me₂(H)Si(C \equiv)₃OH provoque une très vive réaction. Les oxasilacyclopentanes obtenus sont très sensibles à l'hydrolyse et, par cette méthode, on ne peut les obtenir exempts d'une faible quantité d'oxyde diol (Me₂Si(C \leq)₃OH)₂O; dont la formation est attribuée, lors de l'hydrolyse de l'excès de LiAlH₄, au clivage de l'oxasilacyclopentane formé spontanément dans le milieu, dans la préparation de Me₂(H)Si(C \equiv)₃OH. Les cycles siliciés se polymérisent à température ambiante [31, 32].

(3) Cas de l'etain

Nous avons vu que les γ -hydroxyhydrostannanes ne peuvent être isolés, la déshydrocondensation ayant lieu très rapidement à température ordinaire. Les

No.	Hydrures γ-bydroxyies	Condi	tions		Cycles	No.	Rdt.
		T(°C)	Catal.	Durće			(**)
Lx.	Me ₂ (H)S1(CH ₂) ₃ OH	20	Nıa	5 mւո	Me ₂ S ₁ CH ₂ -CH ₂ J O-CH ₂	1	95
IIX	Me ₂ (H)SiCH ₂ CH(CH ₃)CH ₂ OH	20	Nıa	5 min	Me ₂ Si O-CH ₂	2	90
ΠIx	Me ₂ (H)SiCH ₂ CH(CH ₃)CH(CH ₃)OH	20	Nı a	5 тип	Me ₂ Si O-CHCH ₃	3	87
I V x	EL2(H)Ge(CH2)30H	20	NI	24 h	EL2Ge CH2-CH2 I O-CH2	4	90
Vx	Et ₂ (H)GeCH ₂ CH(CH ₃)CH ₂ OH	20	Nı	24 հ	CH_2-CHCH_3 $Et_2Ge - H_2$ $O-CH_2$	5	95
VIx	El2(H)GeCH2CH2CH(CH3)OH	20	Nı	24 h	$Et_2Ge \bigcirc CH_2 - CH_2$ $Et_2Ge \bigcirc O - CHCH_3$	6	92
Vlix	EL2(H)GeCH2CH(CH3)CH(CH3)OH	20	N.	24 h	Et ₂ Ge CH ₂ -CHCH ₃ CH ₂ -CHCH ₃	7	90
VIIIx	Et ₂ (H)GeCH=CHCH ₂ OH (cis)	20	Ni Ni éther	24h	$Et_2 Ge \begin{pmatrix} CH=CH \\ c \\ O-CH_2 \end{pmatrix}$	8	76 65
IX3	Et ₂ (H)GeCH=CHC(CH ₃) ₂ OH	20	Nι	24 h	$Et_2Ge $	9	70
	Bu ₂ (H)SnCH ₂ CH ₂ CH ₂ OH ^b	20			Bu ₂ Sn CH ₂ -CH ₂	10	đ
	Bu ₂ (H)SnCH=CHCH ₂ OH ^b (cs)	20		—	$\begin{array}{c c} CH=CH\\ Bu_2Sn \\ O-CH_2\\ CH=CH \\ CH \\ $	11	d
<u> </u>	Bu ₂ (H)SnCH=CHC(CH ₃) ₂ OH ^b (cis)	20		5 m.n	Bu ₂ Sn O-C(CH ₃) ₂	12	60

REACTIONS DE CYCLISATION DES HYDRURES ORGANOMETALLIQUES 7-HYDROXYLES

^a Ces reactions sont exothermiques en présence de Ni de Raney; la cyclisation s'effectue alors en quelques minutes. ^b Ces réactifs n'ont pas ete isolés. ^c Une faible quantité de dérive correspondant sature est egalement obtenu par suite d'une hydrogenation partielle de la double liaison. Le derive insaturé est purifie par CPV. ^d Ce dérivé doit se former lors de la déshydrocondensation, mais il est insoluble dans les solvants organiques et n'a pu être séparé des sels métalliques de Li et d'Al présents dans le milieu lors de la préparation du γ -hydroxyhydrostannane

cycles stanniques qui en résultent sont pratiquement tous solides et insolubles dans les solvants usuels et il est difficile de les séparer des sels de Li et Al formés lors de la synthèse des γ -hydroxystannanes Bu₂(H)Sn(C \leq)₃OH.

III. Cyclisation d'alcénoxy- et alcynoxy-hv-יאינומופג et alcynoxy-hv- stannanes

Certaines difficultés pratiques apparaissent donc, pour l'obtention de cycles siliciés et stanniques très purs, dans la méthode de déshydrocondensation des

hydroxyhydrures. Ceci nous a conduit à les synthétiser par une autre voie: la cyclisation d'alcénoxy- et alcynoxy-hydrosilanes et -stannanes.

(1) Cas des dérivés organosiliciés

La réaction classique d'un chlorosilane sur un alcool en présence d'une amine a été utilisée pour effectuer la O-silylation des alcools insaturés éthyléniques ou acétyléniques.

 $R_2(H)SiCl + HOR' \xrightarrow{Me_2NPh}{-HCl} R_2(H)SiOR'$ (R' = Radical insaturé de type allylique

ou propargylique)

La diméthylamine utilisée comme agent de déchlorhydratation [33] permet d'obtenir un chlorhydrate d'amine aisément éliminé du milieu réactionnel; tous les alcénoxy- ou alcynoxy-hydrosilanes ainsi préparés sont parfaitement stables et caractérisés par analyse physicochimique.

Le catalyseur de Speier permet la cyclisation de ces dérivés par hydrosilylation interne des insaturations carbone—carbone

Pour R = H, $R' = CH_3$ et $R = R' = CH_3$, l'alcénoxy est porté à reflux en présence de quelques gouttes de H_2PtCl_6 ; le cycle monomère est isolé au fractionnement. On constate très vite que le dérivé cyclique se dimérise (No. 3) ou se polymérise (No. 2) à température ordinaire; une simple distillation suffit pour régénérer le monomère. Nous avons obtenu de la même manière le diméthyl-2,2 oxa-1 sila-2 cyclopentane pur (No. 1, R = R' = H) déjà décrit par Knoth et coll. [34]; dans la même réaction Mironov et coll. signalent la formation de polymères; ce dérivé se polymérise beaucoup plus rapidement que les précédents. Ce phénomène peut être attribué [35] à la grande polarité de la liaison Si-O conduisant à un équilibre du type:

 $\begin{array}{c|c} CH_2-CHCH_3 & CH_3 \\ Me_2Si & 1 \\ CH_2O - CH_2 & 1^{\circ} \text{ ord } \\ CH_2O - CH_2 & 1^{\circ} \text{ ord } \\ CH_2O - CH_2 & 1^{\circ} \text{ ord } \\ CH_2O - CH_2 & 0 \\ CH_2O - CH_2 & 0 \\ CH_2O - CH_2 & 0 \\ CH_2CHCH_2 & 0 \\ CH_3 & (M > 500) \end{array}$ (16)

Cette polymérisation est contrariée par l'effet d'encombrement sur le cycle qui doit géner l'approche des molécules et la coordination des paires libres de l'oxygène vers l'atome de silicium.

Dans le cas du diméthylpropargyloxysilane Me₂(H)SiOC(CH₃)₂C \equiv CH toute tentative de cyclisation conduit à des polymères de structure "*trans*" au niveau de la double liaison par suite de la condensation des molécules les unes sur les autres.

 $n[Me_2(H)SiOC(CH_3)_2C \equiv CH + HSi(Me_2)OC(CH_3)_2C \equiv CH] \rightarrow$

[(Me₂)SiOC(CH₃)₂CH=CH]₂

Ceci est le résultat de la stéréochimie de l'addition des silanes sur les triples liaisons, additions qui n'ont lieu qu'un présence de H_2PtCl_6 pour conduire aux isomères "*trans*". Seule l'addition intermoléculaire peut avoir lieu.

(2) Cas de l'étain

Devant nos premiers résultats et ceux de Laliberte nous avons étendu la réaction entre le dibutyl dihydrostannane et un alcool insaturé au cas de nombreux alcools de type allylique (ou propargyliques [25]). Dans tous les cas le dégagement d'hydrogène est mesuré à l'appareil de Zérévitinov. Le rendement de la cyclisation est amélioré par l'addition d'un catalyseur de réactions radicalaires qui favorise la condensation des groupes SnH sur les doubles liaisons carbone---carbone*

Presque tous les éthers cycliques de l'étain sont solides et totalement insolubles dans la plupart des solvants organiques usuels; cependant, le HMPT les dissout légèrement et a permis dans certains cas leur analyse RMN; nous pensons que de telles strucures résultent de liaisons datives. classiques en série stannique, entre l'oxygène de l'une des mo écules et l'atome d'étain d'une autre molécule, avec l'étain au degré de coordination 5.

$$\overbrace{Sn-O}^{Sn-O} \xrightarrow{Sn-O} \xrightarrow{Sn-O}^{Sn-O} \xrightarrow{Sn-O} Etc.$$

L'association incermoléculaire est confirmée par l'impossibilité de mesurer le $\Delta \nu$ (OH) (méthanol) en infrarouge pour les dérivés solides [32]; l'association méthanol—cycle ne peut en effet s'effectuer si les paires libres de l'oxygène du cycle sont engagées dans des liaisons de coordination.

Discussion

Si la déshydrocondensation intramoléculaire d'hydrures métallés γ -hydroxylés n'apparait pas comme le type de cyclisation le mieux adapté à l'obtention des cycles siliciés et stanniques très purs, avec les meilleurs rendements, l'ensemble de

^{*} Mécanisme radicalaire de l'hydrostannation des oléfines: articles généraux de Neumann [7] et de Kuivila [8].

ces réactions de cyclisation permet cependant de faire apparaitre une différence de comportement entre les divers hydrures organométalliques γ -fonctionnels utilisés: (a) pour les dérivés siliciés la cyclisation est lente à température ordinaire, (b) pour le germanium ces dérivés sont stables, le Ni de Raney est indespensable pour la cyclisation et (c) dans le cas de l'étain, la cyclisation est spontanée à température ordinaire.

En tenant compte du mécanisme de la déshydrocondensation, déjá proposé [5] qui est fonction du caractère réducteur de l'hydrogène fixé au métal:

ces résultats permettent de comparer les polarités des liaisons Si-H, Ge-H et Sn-H.

De toutes les liaisons M—H celle du dérivé germanié paraît la moins polarisée dans le sens Ge^{$\delta+$}—H^{$\delta-$}. Un catalyseur métallique est indispensable en effet pour provoquer la cyclisation du dérivé germanié. Par contre le caractère réducteur de l'hydrogène s'affirme dans le silane et surtout dans le dérivé stannique, qui subissent spontanément la réaction de déshydrocondensation. La polarité M^{δ^+}—H^{$\delta-$} semble donc évoluer dans l'ordre C—H \ll Ge—H<Si—H<Sn—H.

L'inversion observée entre germanium et silicium paraît donc confirmer les conclusions déjà proposées [23c, 36] à propos des alcoylhalogénosilanes et -germanes, et placerait au point de vue électronégativité le germanium entre le carbone et le silicium C>Ge>Si>Sn.

D'autre part les hétérocycles à 5 chaînons du germanium, du silicium et de l'étain se distinguent par leurs états physiques: Les cycles germaniés sont toujours monomères. Les cycles siliciés se dimérisent ou se polymérisent spontanément à température ordinaire. Les cycles stanniques s'associent intermoléculairement.

Il faut voir probablement dans cette évolution le résultat: (a) d'une plus grande polarité de la liaison Si^{δ^+}-O^{δ^-} que de la liaison Ge^{δ^+}-O^{δ^-} qui facilite le transfert des paires libres de l'oxygène sur le silicium ce qui peut résulter en moyenne d'une électronégativité du silicium inférieure à celle du germanium, et (b) d'une plus grande accessibilité des orbitales 5*d* de l'étain qui favorise les associations - $\frac{1}{2}n-0$.

Partie expérimentale

Toutes les réactions ont été réalisées en atmosphère inerte d'azote ou d'argon. Les spectres IR ont été enregistrés sur appareils Perkin—Elmer 457 et 337. Les spectres de résonance magnétique nucléaire ont été effectués dans divers solvants sur appareils Varian A60 et T60 en prenant le TMS comme référence interne.

									I
No.	Dérivés		Rdt.	Eb.	"D	. 9420	Analyse culc.	(trouvé) (%)	i i
			(%)	(C/mm Hg)			υ	Н	
9	Me2 Si(Cl)(CH2)30C0CH1	[20]	8	108/26	1.4376	1.0178	43.17	7.76	r
							(42,79)	(1.77)	
IIa	Mu2SI(CI)CH2CH(CII3)CH2OCOCH3		74	105/18	1.4430	1.0172	46.03	8.20	
							(46.44)	(8.26)	
lla	Me2SI(CI)CH2CH(CII3)CH(CH3)OCOCH3		71	112/20	1.4438	1.0012	48.52	8.59	
	, , ,						(48.77)	(8.46)	
	MeSi(Cl ₂)(CH ₂) ₃ OCOCH ₃	[20, 37]	70	115/30	1.4464	1.1633	33.60	5.62	
							(33.60)	(5.61)	
	MeSI(Cl2)CH2CH(CH3)CH20C0CH3		75	116/20	1.4509	1.1410	36.68	6.15	
							(36.51)	(6.08)	
	MeSI(Cl2)CH2CH(CH3)CH(CH3)0C0CH3		71	121/20	1.4506	11111	39.50	6.23	
							(39.59)	(6.19)	
	Me2 SI(C!)CH=CHCH2 OCOCH3	(trans/gcm,	62	G1/F01	1.4517	1.0470	43.62	6.79	
		10/30)					(43.92)	(6.76)	
	Me2 Si(CI)CH=CHCH(CH3)OCOCH3	(trans,	61	105/19	1.4502	1.0296	46.48	7.31	
		100%)					(46.74)	(7.67)	
	Me2 SI(CI)CH=CHC(CH ₃)2 OCOCH ₃	(trans,	57	102/17	1.4535	1.0172	48.55	7.69	
		100%)					(48.69)	(7.75)	
	MeSI(Cl2)CH=CHCH2OCOCH3	(frans/gcm,	96	115/22	1.4592	1.1787	33.81	4.73	
	1	70/30)					(33.84)	(4.76)	
	McSI(Cl2)CH=CHCII(CH3)OCOCH3	(trans,	92	118/25	1.4582	1,1444	37.01	6.32	
		100%)					(36.83)	(6.43)	
	MeSi(Cl2)CH=CHC(CH3)2OCOCH3	(trans,	94	155/40	1.4607	1.1273	39.83	5.85	
		100%)					(39.85)	(5.80)	

TABLEAU 6 CONSTANTES PHYSIQUES DES CIILOROACETATES SILICIES

S
E
Z
Ì
E.
5
S
E
F
8
M
R
9
Ξ
5
6
S
ğ
5
AL
ğ
5
Ц
5
S
0
S
S
š
Υ
đ
S
z
Z
IS1
6
63

No.	Dêrivê		Rdt.	Pa	"D0	d4 ⁰	Analyse cule	:, (trouvé) (%)		
			(aj)	(C/mm IIg)	1		С	Н	ច	
IVa	Et ₂ Ge(Cl)(CH ₂) ₃ OCOCH ₃		79	152/23	1.4728	1.2186	40.44	7.16	13.26	
							(40.72)	(1.40)	(13.54)	
Va	E12 Ge(Cl)CH2CH(CH3)CH2OCOCH3	[24]	82	138/15	1.4700	1.1899	42.69	7.52	12.60	
							(42.83)	(1.63)	(12.39)	
VIIa	E12Ge(CI)CH2CH(CH3)CH(CH3)OCOC	CH3	75	155/22	1.4722	1.1777	44.73	7.85	12.00	
							(44.58)	(4.7)	(12.45)	
IVb	Ct ₂ Ge(Cl)(CH ₂) ₃ OH	[24]	88	160/20	1.4878	1.2604	37.33	7.60	15.74	
							(37.23)	(1.63)	(15.54)	
ŝ	Et ₂ Ge(Cl)CH ₂ CH(CH ₃)CH ₂ OH		75	148/19	1.4892	1.2248	40.16	8.00	14.81	
							(40.34)	(8.21)	(15.02)	
VIIb	Et2 Ge(Cl)CH2 CH(CH3)CH(CH3) OH		61	146/19	1 4925	1.2025	42.67	8.35	13.99	
							(42.61)	(7.81)	(14.02)	
VIb	Et ₂ Ge(Cl)CH ₂ CH ₂ CH(CH ₃)OH		72	144/21	L.4873	1.2191	40.16	8.00	14.81	
							(40.30)	(8.28)	(15.00)	
VIIIa	Et ₂ Ge(Cl)CH=CHCH ₂ OCOCH ₃		82	145/25	1.4848	1.2605	40.75	6.46	13.36	
							(40.75)	(6.47)	(13.52)	
IXa	Et ₂ Ge(Cl)CH=CIIC(CH ₃) ₂ OCOCH ₃		75	152/2 1	1 4826	1 2038	45.04	7.21	12.08	
							(45.28)	(1.06)	(12.85)	
VIIIb	$Et_2 Ge(Cl)CH=CHCH_2OH$	(cls,	36	136/27	1 4375	1.2891	37.66	6.77	16.88	
		100%)					(37.81)	(6.81)	(15,99)	
۲Xb	Et2 Ge(Cl)CH=CHC(CH3)2OH	(cis,	75	136/23	1.4961	1.2151	42.67	7.66	13.99	
		100%)					(42.69)	(1.40)	(14.20)	

I. Hydrures siliciés, germanié: et stanniques γ -hydroxylés $= M(H)(C=)_3OH$

A. Réactions de condensation des chlorohydrures sur les acétates ou les alcools insaturés

Toutes les réactions de condensation ont été réalisées dans un ballon de 50 cm³ purgé à l'azote, muni d'un réfrigérant à boules, d'une ampoule à brome et d'un thermomètre.

(1) Action des acétates

Chlorosilanes. Au reflux de l'acétate, on ajoute mole à mole le diméthylchlorosilane ou le méthyldichlorosilane en présence de 6 gouttes de H_2PtCl_6 dans le THF (0.2 *M*); le chauffage est maintenu jusqu'à ce que le reflux cesse. La distillation donne toujours une fraction de tête comprenant les produits initiaux, le dérivé d'addition et une importante fraction résiduelle indistillable. (Tableau 6.)

 Et_2GeHCl . L'acétate (0.110 mole) est ajouté à 0.100 mole de diéthylchlorogermane, porté à 80°C; au bout de 30 minutes, l'addition est terminée et la température est maintenue pendant 48 h. Les dérivés IVa, Va, VIIa, VIIIa (Tableau 7) sont isolés par distillation.

 Bu_2SnHCl . On ajoute à 20°C et sous agitation 0.0217 mole (5.87 g) de dibutyl chlorohydrostannane à 0.0239 mole d'acétate insaturé; la réaction est exothermique et rapide; les caractéristiques physiques des produits obtenus sont résumées dans le Tableau 8.

(2) Action des alcools

 Et_2 GeHCl. Le diéthylchlorogermane, 6.0g (0.0359 mole) et 0.0395 mole d'alcool sont confrontés en présence de 5 mg d'AIBN pendant 24 h à 70°C. La distillation donne les dérivés IVb, Vb, VIb, VIIb, VIIIb et IXb (Tableau 7). Les caractéristiques RMN de ces dérivés sont données dans les Tableaux 9 (saturés) et 10 (insaturés).

 Bu_2 SnHCl. On ajoute goutte à goutte et à froid 2.10 g (0.0123 mole) de diméthyl éthynyl carbinol sur 6.03 g (0.0118 mole) de dibutyl chlorohydrostannane. La réaction est exolhermique et instantanée. La distillation donne 7.55 g de dibutyl chlorostannyl-1 méthyl-3 butène-1 ol-3 (Rdt. 88%) (XIIb) (Eb., 150°C/0.05 mm Hg; F, 56–58°C; Analyse trouvé: C, 44.09; H, 7.55; Cl, 9.57. Calc.: C, 44.17; H, 7.69; Cl, 10.03%).

B. Réduction des chlorures métalliques γ -acétoxylés ou γ -hydroxylés

Dans un ballon à trois voies, purgé à l'azote et muni d'un réfrigérant à

No.	Dénvés	Eb. (°C/mm Hg)	n ²⁰ D	d ²⁰	
Xa Xla Xla Xla	Bu ₂ SnClCH ₂ CH ₂ CH ₂ OCOCH ₃ Bu ₂ SnClCH∝CHCH ₂ OCOCH ₃ Bu ₂ SnClCH≈CHCH ₂ OCOCH ₃ Bu ₂ SnClCH≈CHC(CH ₃) ₂ OCOCH ₃	122/0.06 124/0.04 125/0.07	1.5060 1.5089 1.5068	1.2666 1.3156 1.2545	

LABLE/ CARAC	AU 9 TERISTIQUES SPECTRALES (RMN) DES CH	LOROACE	TATES SA	TURES R.MC	ChCH4, CH4R	(A) (A) (A)(C)(C)	ja taolvent S	muu us y rij	Ven us V
No.	Dérivé		(^V H)9	δ(R')	b(R'')	5(R)	b(CH ₃ CO)	J(H _A H)	J(H _A R")
1		100	00 0						
1	Me2si(LI)CH2CH2CH2OCUCIt3	201	1 98	i	ł	0.41	1.97	6.5	1
IIa	Me2 SI(CI)CH2CH(CH3)CH2 OCOCH1		3.78	1.05	1	0.44	1.98	9	ł
UII.	Me2SI(CI)CH2CH(CH3)CH(CH3)0C0CH		4.67	1.10	0.97	0.45	70.1	9	7
	MeSi(Cl2)CH2CH2CH2OCOCH3	20, 37]	4.03	ſ	I	0.79	1.98	6.5	I
	MeSI(Cl2)CH2CH(CH3)CH2OCOCH3		3.87	1,08	I	0.83	2.01	9	1
	MeSi(Cl2)CH2CH(CH3)CH(CH3)OCOCH3	-	4.72	1.17	1.05	0.83	1.98	6.2	7
IVa	Et2 Ge(CI)CH2CH2 CH2 OCOCH3		3.66	1	I	1	2.00	6.5	ł
Va	Lt2 Ge(Cl)CH2CH(CH3)CH2OCOCH3 [24]	3.80	1.10	ļ	ł	1.98	6	I
VIIa	Et2 Ge(Cl)CH2 CH(CH3)CH(CH3)OCOCH	٣.	4.69	1.17	0.98	I	1.98	y	6.5
Хa	Bu ₂ Sn(Cl)CH ₂ CH ₂ CH ₂ OCOCH ₃		3.98	í	I	I	1.97	6.25	1
CARAC' (solvant,	TERISTIQUES SPECTRALES (RMN) DES CH . CCl4; b en ppm; J en Hz)	LOROACE	TATES ET	CIILOROALC	LESNI SJOO	URES IL ₂ MCICH	() (B) H=CHC(R [']) ₂	Σ (Σ = OH ou	ococii ₃)
					-			-	.
.ov	Denve	د الا DU ("a)	V H)	φ(HB)	0(R)	0(CH3CO)	J(HAHB)	J(HBIL)	J(IIAR')
		trans							
VIIIa	Et2 Ge(Cl)CH=CHCH2 OCOCH3	<i>cl</i> 8, 6(0 6.90	6.42	4.53	200	13	5.5	
		Irans, 41	0 5.98	6.21	4.55	2.03	18.5	I	ł
IXa	Et ₂ Ge(Cl)CH=CHC(CH ₃) ₂ OCOCH ₃	cla, 51	0 5.60	6.21	1.50	1.97	14	3.75	0.5
		lians, 51	0 5.83	6.27	1.74	207	19.5	I	I
XIa	Bu ₂ Sn(Cl)CH=CHCH ₂ OCOCH ₃	cis, 101	0 6.29	6.55	4.52	2.03	12.25	сı	0.5
XIIa	Bu ₂ Sn(Cl)CH=CHC(CH ₃) ₂ OCOCH ₃	cie. 10	0 4.82	5.14	1.72	2.14	11.5	ł	I
VIIIP	Et2Ge(CI)CH=CHCH2OH	cia, 101	0 5.91	6.61	4.37	I	11.6	2.25	2.25
IXb	Et2Ge(Cl)CH=CHC(CH3)2OH	cls. 10(0 5.72	6.43	1.28	1	11	I	I
хиь	Bu ₂ Sn(Cl)CH=CHC(CH ₃) ₂ OH	св, 10	0 6.05	6.54	1.38	١	11.5	I	1

BLEAU 11	
RACTERISTIQUES SPECTRALES (RMN) DES CHLOROALCOOLS GERMANIES SATUR	ES
(A)	
Ge(Cl)CH2CHCHOH	
R R'	
lvant, CCl4,δ en ppm;J en Hz)	

No.	Dénvé	δ(Et)	$\delta(H_A)$	δ(R')	δ(R)	J(H _A H)	J(H _A R')
іур	Et2Ge(CI)CH2CH2CH2OH	1.12	3.45		_	6.25	-
٧ъ	E ^t 2G ^e (Cl)CH ₂ CHCH ₂ OH l CH ₃	1.14	3.21	3.53	0.93	7.3	6.25
VIIЬ	Et ₂ Ge(Cl)CH ₂ CHCHOH H ₃ C CH ₃	1.16	3.69	_	—	3.9	6.3
V16 	EL2Ge(Cl)CH2CH2CHOH I CH3	1.15	3.67	1.17		6.0	_

boules, d'un agitateur mécanique et d'une ampoule à brome, contenant 0.25 mole de LiAlH₄ en suspension dans 100 cm³ d'éther, on ajoute goutte à goutte 0.1 mole de chloroacétate (0.5 mole de chloroalcool) dilué dans 50 cm³ d'éther sec. Après 5 h de réflux dans le cas des dérivés germaniés, hydrolyse rapide et extraction, la phase éthérée est séchée sur Na₂SO₄. Après la concentration (sous vide réduit (100 mm Hg) en piégeant l'éther dans le cas du silicium), la distillation donne les hydrures métallés γ -hydroxylés. Les caractéristiques physiques sont rassemblées dans le Tableau 12.

II. Cyclisation des hydrures métallés γ -hydroxylés (Tableau 13)

Les dérivés hydroxylés à liaison M—H sont placés sous azote, à température ordinaire et en l'absence de solvant, dans un ballon muni d'une agitation et relié à un gazomètre. Le Ni de Raney (Fluka) est utilisé après lavages répétés à l'alcool et à l'éther.

No.	Dênvê		Eb. (°C/mm H	nD ²⁰ g)	d4 ²⁰
Ix	Me ₂ (H)SICH ₂ CH ₂ CH ₂ OH		156	1.4355	0.8537
Пх	Me ₂ (H)SiCH ₂ CH(CH ₃)CH ₂ OH	[14]	158	1.4396	0.8626
Hlx	Me ₂ (H)SiCH ₂ CH(CH ₃)CH(CH ₃)OH	[14]	164	1.4339	0.8546
[V x	Et ₂ (H)GeCH ₂ CH ₂ CH ₂ OH	[10]	110/15	1.4670	1.1001
Vx	Et2(H)GeCH2CH(CH3)CH2OH		114/21	1.4708	1.0934
VIIx	Et2(H)GeCH2CH(CH3)CH(CH3)OH		117/21	1.4716	1.0786
Vlz	Et2(H)GeCH2CH2CH(CH3)OH	[10]	115/22	1.4673	1.0873
VIIIx	Et2(H)GeCH=CHCH2OH	CIS	103/26	1.4851	1.1429
IXx	Et2(H)GeCH=CHC(CH3)2OH	cis	98/21	1.4747	1.0670

CARACTERISTIQUES PHYSIQUES DES HYDRURES METALLES γ -HYDROXYLES

CHINNON		INDES DE LA CICEISATIO	כשווטעת זע כשת א	Ling Clauder	CIT I VONIT			
Hydrures No	(g)	Cycle		No	(8)	Rdt. (%)	Eb ([°] C/mmHg)	Constantes physiques
۲ ا	(3.75)	Me ₂ Si CH ₂ -CH ₂ Me ₂ Si - CH ₂	[34]	_	3.50	95	95/760	n <mark>20</mark> 1.4276 ^b
lIx	(5.23)	Mc ₂ Si CH ₂ -CHCH ₃	[14]	5	4.61	06	124/760	ⁿ D 1.4253 d ²⁰ 0.8991
III×	(4.35)	Me ₂ SiO-CHCH ₃	[14]	ę	3.72	87	129/760	¹ 20 1.4268 ¹ D 1.4268
IVx	(1.05)	Et ₂ Ge CH ₂ -CH ₂ Et ₂ Ge O-CH ₂	[10]	÷	6.28	06	78/20	²⁰ 1.4807
٧x	(4.08)	Et2Ge CH2CHCH3	[10]	ß	3.71	96	82/21	¹ D 1.4715
VIx	(6.50)	Et ₂ Ge CH ₂ -CH ₂ Et ₂ Ge - CH ₃	[10]	ę	5.(92	86/20	"20 1.4651
VIIx	(6.82)	Et ₂ Gt CH2-CHCH3 O-CHCH3	[10]	۲	6.07	06	90/23	"D 1.4650
VIIIx	(4.81) (4.80)	Et 2 Gt CH=CH Et 2 Gt O-CH2	[10]	æ	3.60 sans solv. éther	16	72/18	"20 1.4804
IXx	(6.49)	Et ₂ Gt ^{CH3} CH3 O-C	[01]	6	4.54	65 70	80/18	"20 1.4615
	(1.06)	CH ₃ Bu ₂ Sn CH=CH Bu ₂ Sn CH ₃ a CH ₃	[25]	12	381	60	83/0.03	1 <mark>0</mark> 1.5109 4 ²⁰ 1.2285
a A partir du	ı chloroulcool	stannique no. Xb. ^b L'indice a	ugmente rapidement	après la distillatio	n par suite de la d	Imérisation puis	i de la polymérisatie	un du cycle.

DONNEES EXPERIMENTALES DE LA CYCLISATION DES HYDRIDES METALLES 2:HYDROXYLES

TABLEAU 13

65

(1) Dérivés siliciés

L'addition de Ni de Raney sur l'hydrure silicié γ -hydroxylé accélère considérablement le dégagement d'hydrogène. Après obtention de la quasi-totalité du volume d'hydrogène théorique, la distillation conduit au cycle silicié. La présence d'une bande OH en IR correspond à une petite quantité d'oxyde diol [Me₂Si(C \lesssim)₃ OH]₂ O que l'on élimine en presque totalité par redistillation du produit sur CaO fraîchement pyrolysé, utilisé comme remplissage de colonne.

(2) Dérivés germaniés

En présence de 0.5 g environ de Ni de Raney, un lent dégagement d'hydrogène est mesuré au Zérévitinov. Lorsque la quantité théorique est obtenue, le produit est distillé. Dans le cas de cycles insaturés, l'élimination de la faible quantité de cycle saturé est réalisée par CPV préparative sur appareil Aerograph A-700 (colonne, SE30 sur chromosorb W30/60; longueur, 10 m; diamètre, 0.5 cm; gaz vecteur, He; débit, 50 ml/mm).

(3) Dérivés stanniques

La phase éthérée contenant le γ -hydroxyhydrostannane est concentrée; seul le dibutyl-2,2 diméthyl-5,5 oxa-1 stanna-2 cyclopentène-3, líquide formé spontanément à partir du dérivé précédent, reste dans cette phase éthérée et peut être isolé par distillation.

III. Cyclisation d'alcénoxy- et alcynoxyhydrosilanes et stannanes

A. Dérivés sılıciés

(1) Action de Me₂SiHCl sur les alcools insaturés

Un ballon, muni d'une agitation mécanique et surmonté d'un réfrigérant, contient, en solution dans l'éther, 0.1955 mole de diméthylchlorohydrosilane (18.50 g) et 22.90 g de *N*,*N*-diméthyl aniline; l'alcool insaturé (0.1759 mole) est alors ajouté goutte à goutte; l'addition terminée, l'agitation est maintenue pendant 4 h. Le précipité de chlorhydrate de *N*,*N*-diméthyl aniline, insoluble dans l'éther est séparé par filtration. Le dérivé est recueilli pur à la distillation. Les caractéristiques physiques et spectrales sont données dans le Tableau 14.

(2) Cyclisation des éthers organosiliciés d'alcools insaturés

Une petite fraction d'alcénoxyhydrosilane (1 g par exemple d'allyloxy diméthyl hydrosilane) est portée à reflux en présence de quelques gouttes de H_2PtCl_6 dans le THF; le reste est ajouté goutte à goutte par une ampoule à brome en 15 min environ; la température s'élève progressivement jusqu'au point d'ébullition du cycle (95 à 130°C). Des analyses chromatographiques permettent de suivre l'évolution de la réaction. On recueille le dérivé cyclique silicié à la distillation (diméthyl-2,2 oxa-1 sila-2 cyclopentane, Rdt. 25%). Les autres dérivés cycliques sont préparés selon la même méthode (Tableau 15, constantes physiques Tableau 13).

L'indice de réfraction des cycles préparés augmente lentement après la distillation; (pour le cycle No. 1 on passe de n_D^{20} 1.4215 après la distillation à n_D^{20} 1.4383 au bout de 1 h); ceci correspond à la formation lente de dimère et de polymères siliciés.

TABLEAU 14 Me₂SiOCHC=CH₂ (RMN; solvant, CCL; δ en ppm; J en Hz; IR: ν en cm⁻¹) | | | | R R'

Dénvé	Eb. (°C1 mmHg)	Constantes	Données spectrales caracteristiques			
		ppysiques	Particulières	Genérales		
		n ²⁰ 1.3945	$\delta(O-CH_2) 3.95$			
Me2SiOCH2CH=CH2 } H	82/760	d ²⁰ 0 7895	$δ(S_1 - H) 4.80$ $J_{trans} 1$ $\delta(-CH=) 5.86$			
Me ₂ 51OCH ₂ C=CH ₂ H CH ₃	105/760	n_D^{20} 1.4020 d_A^{20} 0.7954	δ(OCH ₂) 3.95 δ(SιΗ) 4.83 δ(R') 1.61	> 3 (Me) 0.15-0.17 J(SIHMe) 2.7 V(C≈C) 1650		
Me ₂ SiOCHC=CH ₂ \ H CH ₃ CH ₃	110/760	n_D^{20} 1.4155 d_A^{20} 0.8041	$\delta(O-CH) 4.20$ $\delta(S_1-H) 4.91$ $\delta(R) 1.25; J(CH-R) 6.5$ $\delta(R') 1.68$	ν(SiOC) 1050, 1110		
$Me_2SiOCC \equiv CH$ $\begin{cases} H_3 \\ H \\ $	121/760	$n_{\rm D}^{20}$ 1.4042 $d_{\rm A}^{20}$ 0.8094	δ(С(СН́3)2) 1.47 δ(SI-H) 4.75 δ(С-H) 2.32	{δ(Me) 0.21 J(S1H-Me) 2.7 ν(C=C) 3300 ν(S1OC) 1050, 1110		

B. Synthèse des cycles stanniques par condensation de Bu_2SnH_2 sur les alcools insaturés

Suivant le mode opératoire décrit dans ref. 25 les synthèses suivantes ont été réalisées:

Dibutyl-2,2 oxa-1 stanna-2 cyclopentane (10)

9.70 g (0.0413 mole) de dihydrure de dibutyl étain et 11.90 g (0.2052 mole) d'alcool allylique sont agités pendant 48 h sous azote à 40°C en présence de 5 mg d'AIBN. Un lent dégagement d'hydrogène apparait que l'on mesure au Zerevitinov; le précipité blanc formé est récupéré sur fritté. Ce précipité, lavé au pentane et séché par évaporation sous vide, donne 3 g de cristaux blancs insolubles dans tous les solvants organiques (Rdt. 25%) (F, 220–224°C. Analyse trouvé: C, 45.50; H, 8.49. $C_{11}H_{24}$ SnO calc.: C, 45.40; H, 8.31%).

Dibutyl-2,2 méthyl-4 oxa-1 stanna-2 cyclopentane (13)

7.04 g (0.0300 mole) de Bu_2SnH_2 et 8.65 g (0.1200 mole) d'alcool méthallylique sont confrontés dans les mêmes conditions expérimentales que précédement en présence de 5 mg d'AIBN. La filtration fournit 5.40 g d'un précipité amorphe (Rdt. 60%) (F, 220–223°C. Analyse trouvé; C, 47.29; H, 8.78. $C_{12}H_{26}SnO$ calc.: C, 47.25; H, 8.59%. Dibutyl-2,2 diméthyl-4,5 oxa-1 stanna-2 cyclopentane (14) 9.32 g (0.0396 mole) de Bu₂SnH₂ et 13.78 g de méthyl isopropényl carbinol conduisent selon le mode opératoire précédent (5 mg d'AIBN) à 1 g de dérivé cristallisé (Rdt. 8%) (F, 156–160°C. Analyse trouvé: C, 49.05, H, 8.81. C₁₃ H₂₈SnO calc.: C, 48.94; H, 8.85%.)

IV. Préparation du dibutylstannylène

Dans un tube scellé sous azote, un mélange stoechiométrique de dihydrure de dibutyl étain et de diméthoxydibutyl étain, est porté à 100° C pendant 1 h. Le mélange se scinde en deux parties. La fraction supérieure, claire, est identifiée au méthanol; il est recueilli en totalité. La fraction inférieure, visqueuse et indistillable, est identifiée au dibutylstannylène (Bu₂Sn)₂ caractérisé par les réactions suivantes:

0.56 g de dibutylstannylène (0.0024 mole) et 0.65 g de chlorure mercurique sont portés à 100°C pendant 30 min; on observe un dépot de mercure, caractéristique de la réduction du chlorure mercurique; le liquide surnageant, se solidifiant au refroidissement, est identifié au dichlorure de dibutyl étain.

0.41 g de dibutylstannylène (0.0017 mole) et 0.26 g de chlorure de butyle, portés à 100°C pendant 20 min donnent du chlorure de tributyl étain.

Dibutylbromostannyl-1 butène-2: 10.95 g de dibutylstannylène (0.0470 mole

Réactus	Conditions expérimentales			Produit	No.	Rdt.
	Catel.	Dա (b)	ée T([°] C)	-		(%)
Me₂(H)SiOCH₂CH≈CH2	H ₂ P:Cl ₆	3	120	Me ₂ Si CH ₂ -CH ₂ J O-CH ₂	1	25
Me ₂ (H)SiOCH ₂ C=CH ₂	H2PCI6	з	125	Me ₂ Si CH ₂ -CHCH ₃	2	47
CH3 Me(H)SiOCHC≖CH2 │ \ CH3CH3	H ₂ PrCl6	3	130	Me ₂ Si CH ₂ -CHCH ₃ Me ₂ Si O-CHCH ₃	3	65
Me ₂ (H)SiOC(CH ₃) ₂ C≡CH	H ₂ PtCl ₆	3	130	polymėres	-	
Bu₂(H)S¤OCH₂CH≈CH₂ ^a	AIBN	48	60	Bu ₂ Sn CH ₂ -CH ₂	10	25
Bu ₂ (H)S¤OCH ₂ C=CH ₂ ^a CH ₃	AIBN	48	60	$Bu_2Sn \underbrace{CH_2 - CHCH_3}_{O-CH_2}$	13	60
- Ви2(Н)SnOCHC=CH2 ⁰ СН3СН3	AIBN	-18	60	Bu ₂ Sn CH ₂ -CHCH ₃	14	8

REACTIONS DE CYCLISATION D'ALCENOXY ET ALCYNOXY HYDROSILANES ET STANNANES

^d Produits non Bolés, formés probablement dans l'action de Bu_2SnH_2 sur les alcools insaturés. La durée de la réaction est déterminée à partir de l'instant où s'effectue le mélange.

et 7.0 g de bromure de crotyle (excés 10%) sont chauffés 40 h à 60°C en tube scellé; 13.20 g (Rdt. 76%) de produit sont recueillis à la distillation (% cis/trans: 50/50). (Eb 102°/0.2 mm Hg; n_D^{20} 1.5112, d_4^{20} 1.3369. Analyse Trouvé: C, 40.14; H, 6.99. $C_{12}H_{25}$ SnBr calc.: C, 39.17; H, 6.85%.)

Dibutylchlorostannyl-1 propène-2: dans les mêmes conditions expérimentales, 4.66 g de dibutylstannylène (0.020 mole) et 1.66 g de chlorure d'allyle (excès 10%) conduisent à 5.20 g (Rdt. 84%) de produit (Eb. 85°C/0.4 mm Hg; n_D^{20} 1.4923; d_4^{20} 1.2141).

Bibliographie

- M. Massol, J. Barrau et J. Satge, Ve Symposium International sur la Chimie des Organométalliques, Moscou, 1971, Abstr. No. 218, p. 574.
- 2 B.N. Dolgov, N.P. Kharitonov et M.G. Voronkov, Zh. Obsheb. Khim., 24 (1954) 1178.
- 3 B.N. Dolgov, N.P. Kharitonov, N.E. Glushkova et Yu. I. Khydovin, Zb. Obshch. Khim., 28 (1958) 2710
- 4 Yu. I. Khudobin, N.A. Sergeeva et N.P. Kharitonov, Zh. Obshch. Khim., 38 (1968) 407.
- 5 J. Satge, Bull. Soc. Chim., (1964) 630.
- 6 M. Massol, J. Satge et J. Barrau, C.R. Acad. Sci. Paris, Sér.C, 268 (1969) 1710.
- 7 W.P. Neumann, Angew. Chem. Inter. Ed., 2 (1963) 165.
- 8 H.G. Kuivila, Advan. Organometal. Chem., 1 (1964) 47.
- 9 M. Massol, J. Satgé, P. Riviere et J. Barrau, Progr. Organometal. Chem., (1969) H3.
- 10 M. Massol, J. Barrau et J. Satgé, J. Heterocycl. Chem., 7 (1970) 783.
- 11 M. Massol, J. Barrau et J. Satgé, J. Organometal. Chem., 25 (1970) 81.
- 12 M. Massol, D. Mesnard, J. Barrau et J. Satge, C.R. Acad. Sci. P.u.is Sér. C. 272 (1971) 2081.
- 13 J. Barrau, M. Massol, D. Mesnard et J. Satgé, J. Organometal. Chem., 30 (1971) C67.
- 14 C. Manuel, P. Mazerolles et J.C. Florence, J. Organometal. Chem., 30 (1971) 5.
- 15 J.C. Florence, Thèse 3e cycle, Toulouse, 1970.
- 16 G. Manuel et P. Mazerolles, J. Organometal. Chem., 19 (1969) 43.
- 17 B.R. Laliberte, W. Davidsohn et M.C. Henry, J. Organometal. Chem., 5 (1966) 526.
- 18 F.G.A. Stone, Hydrogen Compounds of the Group IV, Prentice Hall, London, 1962, p. 88.
- 19 M. Lesbre, P. Mazerolles et J. Satgé, The Organic Compounds of Germanium, Wiley-Interscience, New-York, 1971.
- 20 J.L. Speier, J.A. Webster et G.H. Barnes, J. Amer. Chem. Soc., 79 (1957) 974.
- 21 R.A. Benkeser et R.A. Hickner, J. Amer. Chem. Soc., 80 (1958) 5298.
- 22 J.W. Ryan et J.L. Speier, J. Org. Chem., 31 (1966) 2698.
- (a) M. Lesbre, J. Satgé et M. Massol, C.R. Acad. Sci. Paris, Sér. C, 256 (1973) 1548.
 (b) M. Lesbre, J. Satgé et M. Massol, C.R. Acad. Sci. Paris, 258 (1964) 2842.
 (c) M. Massol, Thèse Toulouse, 1967.
- 24 J. Barrau, Thèse Toulouse, 1973.
- 25 M. Massol, J. Satgé et B. Bouyssieres, Synth. Inorg. Metalorg. Chem., 3 (1973)1.
- 26 R.W. Weiss, in M. Dub (Ed.), Organometallic Compounds of Ge, Sn, Pb, Springer-Verlag, Berlin, 1967.
- 27 M.Massol, J. Satgé, P. Riviere et J. Barrau, J. Organometal. Chem., 22 (1970) 599.
- 28 M. Massol, P. Riviere, J. Barrau et J. Satgé, C.R. Acad. Sci. Paris, Sér. C, 270 (1970) 237.
- 29 M. Massol, J. Barrau, P. Rivière et J. Satgé, J. Organometal, Chem., 30 (1971) 27.
- 30 W.P. Neumann et J. Pedain, Tetràhedron Lett., (1964) 2461.
- 31 A. Marchand, M. Massol, J. Barrau et J. Satgé, J. Organometal. Chem., 63 (1973) 175.
- 32 A. Marchand, P. Gerval, M. Massol et J. Barrau, J. Organometal. Chem., 74 (1974) 227.
- 33 V.F. Mironov, V.L. Koshkov et N.S. Fedotov, Zh. Obshch. Khim., 39 (1969) 966.
- 34 W.H. Knoth Jr. et R.V. Lindsey Jr., J. Amer. Chem. Soc., 80 (1958) 4106.
- 35 G. Rossmy et G. Koerner, Makromol. Chem., 73 (1963) 114.
- 36 J. F. Labarre, M. Massol et J. Satge, Bull. Soc. Chim. Fr., (1967) 736.
- 37 B.A. Sokolov, O.N. Khilko, N. M. Zhivotova et E.I. Kositsyna, Zh. Obshch. Khim., 36 (1966) 108.